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Classical Behavior After a Phase Transition:
II. The Formation of Classical Defects
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Classical defects (monopoles, vortices, etc.) are a characteristic consequence of many
phase transitions of quantum fields. Most likely these include transitions in the early
universe and such defects would be expected to be present in the universe today. We
continue our analysis of the onset of classical behavior after a second-order phase
transition in quantum field theory and show how defects appear after such transitions.
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1. INTRODUCTION

Because phase transitions take place in a finite time, causality guarantees that,
even for continuous transitions, correlation lengths remain finite. Order parameter
fields become frustrated, and topological defects arise so as to reconcile field
phases between different correlated regions (Kibble, 1976; Zurek, 1996).

A huge variety of defects is possible, according to the complexity of the initial
symmetry and its breaking (Kibble, 1980). Monopoles can easily overwhelm the
energy density of the universe, while cosmic strings (vortices) may be the source of
high-energy cosmic rays and lensing, as well as contributing to structure formation
(although they are not now thought to be its determining factor). More complex
strings can exacerbate baryogenesis.

As solutions to the classical field equations, these defects have nonpertur-
batively large energies, commensurate with the temperature scale at which the
transition takes place. Thus, for example, cosmic strings produced in the early uni-
verse will be expected to have an energy/unit length (tension)σ ∼ (1016 GeV)2,
where 1016 GeV is the estimated GUT scale. For this reason alone, defects are
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manifestly classical entities after the transition, whose evolution can be handled
successfully through the solution of the classical equations that they satisfy (e.g. the
Nambu–Goto action for cosmic strings). Nonetheless, their origin in the beginnings
of the phase transition that spawned them is quantum mechanical. There are further
complications according as the symmetries are global or gauged (Rajantie, 2001),
but the simplest of all are topological global vortices (or strings) and it is these
that we shall consider here.

Having set up the model, the subsequent sections of this work concern the
transition from quantum field theory to classical field theory. We know the mech-
anism for this, the decohering effects of the quantum environment with which
the long-wavelength modes of the order parameter fields interact (Lombardo and
Mazzitelli, 1996). Field or phase ordering and classical defect formation are con-
trolled by long-wavelength modes. We consider these modes to constitute the open
“system” which undergoes quantum decoherence due to an “environment” which
consists of everything else (short-wavelength modes and all other fields interact-
ing with the order parameter fields). This permits the calculation of a decoherence
time tD after the onset of the transition, after which the long-wavelength modes
behave classically, subject to generalized Langevin equations. At the same time,
the Wigner function can now be interpreted as a Fokker–Planck probability density
and we can calculate correlation functions (Lombardoet al., 2000). Given that the
correlation functions are now defined in terms of classical probabilities, classical
defects can be identified.

The major characteristic of defects is their topological charge. We conclude
by showing how localized topological charge precedes the appearance of defects,
and gives an estimate of defect densities when they do appear.

For an instantaneous quench the onset of classical behavior has already been
discussed by us in an earlier paper in these proceedings, henceforth known as
Part I, and elsewhere Lombardoet al.(2001), and we shall not repeat all the details
here. What we shall do is elucidate those properties of the classicalization due to
the environment that are relevant to defect formation.

We conclude by briefly comparing our approach to others for the production
of defects. This work has yet to be completed, and will be continued elsewhere.

2. THE MODEL: COUPLING ORDER PARAMETER FIELDS
TO THE ENVIRONMENT

The most immediate difference between the model here and that of Part I of
this paper lies in the replacement of the single real scalar order parameter field
there by a complex field8. This is the simplest field permitting acceptable defects,
in the form of global vortices. [The defects of a single scalar field with brokenZ2

symmetry, domain walls, would dominate the energy density of the universe if
they were present.] As in Part I, we take the8 field to interact with a collection



P1: GRA

International Journal of Theoretical Physics [ijtp] pp657-ijtp-454172 November 11, 2002 21:53 Style file version May 30th, 2002

Classical Behavior After a Phase Transition: II 2147

of real scalar environmental fieldsχn (n = 1,. . .,N). It is no loss of generality to
take all couplings toχ -fields identical, and allχn masses identical, to give a model
with U (1)× O(N) or O(2)× O(N) symmetry broken toO(N). However, the
O(N) symmetry of the model, while tactically useful, is accidental and purely for
calculational convenience. We adopt a Cartesian field basis8 = (φ1+ iφ2)/

√
2

because in the linear regime at the early times that are most relevant to us,φ1 and
φ2 behave independently. The action is

S[8, χ ] = Ssyst[8] + Senv[χ ] + Sint[8, χ ], (1)

where we have made a provisional separation into system-field and environment
with which it interacts, where

Ssyst[8] =
∫

d4x

{
1

2
∂µφa∂

µφa + 1

2
µ2φ2

a −
λ

4

(
φ2

a

)2}
is the action for theφa fields (a = 1, 2) (we assume summation over repeated index
a), with µ2 > 0, and

Senv[χ ] =
N∑

n=1

∫
d4x

{
1

2
∂µχn∂

µχn − 1

2
m2χ2

n

}
and

Sint[8, χ ] = −
N∑

n=1

g

8
√

N

∫
d4x φ2

a(x)χ2
n (x),

describe the environment-fieldsχn and its interaction with them. These are taken
to be weakly coupled, with 1À 1/

√
N À g ' λ. Meanwhile, for simplicity the

χn masses are fixed atm' µ.
The model has a continuous transition for the breaking of theO(2) symmetry

at the critical temperatureTc where, in units in whichkB = 1, T2
c = O(µ2/

√
Nλ)

À µ2. We shall assume that the initial states of the system and environment are
both thermal, at temperaturesT = O(Tc) > Tc. In this way the8 field is peaked
strongly in field space about the unstable maximum. Incorporating the hard thermal
loop “tadpole” diagrams of theχ (and8) fields in the8 mass term leads to the
effective action for8 quasiparticles,

Seff
syst[8] =

∫
d4x

{
1

2
∂µφa∂

µφa − 1

2
m2
φ(T0)φ2

a −
λ

4

(
φ2

a

)2}
wherem2

φ(T0) = −µ2(1− T2
0 /T2

c ) = M2 > 0. As in Part I, we can take an initial
factorized density matrix at temperatureT0 of the form ρ̂[T0] = ρ̂8[T0]ρ̂χ [T0],
whereρ̂8[T0] is determined by the quadratic part ofSeff

syst[8] andρ̂χ [T0] by Senv[χ ].
That is, the manyχn fields have a large effect on8, but the8-field has negligible
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effect on theχn. This is crucial for the validity of our approximation. More details
are given in Part I.

In fact, with defects in mind, we need to perform a further factorization
to isolate the long-wavelength modes of the system-field. As we stressed, the
decohering agents are not only the environment-fieldsχn, which have already
been introduced but also the short-wavelength modes (Lombardo and Mazzitelli,
1996) of the self-interacting8-field.

As in Part I, we split the fields initially as8 = 8< +8> (andφa = φ<a +
φ>a ), where the system-field8< contains the modes with wavelengths longer than
the critical valueµ−1 and the bath or environment-field8> contains wavelengths
shorter thanµ−1. This is a natural division, since modes with wavelengths shorter
thanµ−1 are stable and modes with longer wavelengths unstable. Further, the
short-wavelengths explore the interior of classical vortices, irrelevant for counting
them. However, once the power in the fluctuations has moved to long-wavelength
modes, with wavenumberk0 < µ, the exact delineation is unimportant, and shorter
wavelength modes can be included in the “system.” With this in mind a more
realistic decomposition into ’system’ and ’environment’ is not (1), but

S[8, χ ] = Ssyst[8< ] + Senv[χ ,8> ] + Sint[8< , χ ,8> ],

with µ the demarcating momentum, where

Ssyst[8< ] =
∫

d4x

{
1

2
∂µφ<a∂

µφ<a + 1

2
µ2φ2

<a −
λ

4

(
φ2

<a

)2}
,

and

Senv[8> , χ ] =
∫

d4x

{
1

2
∂µφ>a∂

µφ>a − 1

2
µ2φ2

>a −
λ

4

(
φ2

>a

)2}

+
N∑

n=1

∫
d4x

{
1

2
∂µχn∂

µχn − 1

2
m2χ2

n

}
,

Sint[8< ,8> , χ ] = −
N∑

n=1

g

8
√

N

∫
d4x φ2

<a (x)χ2
n (x)

−λ
2

∫
d4x [φ2

<a (x)φ2
> b(x)+ 2φ<a (x)φ< b(x)φ>a (x)φ> b(x)].

All terms omitted in the expansion are not relevant for the one-loop calculations
for the long-wavelength modes that we shall now consider.

3. THE SIMPLEST TRANSITION: INSTANTANEOUS QUENCH

For simplicity we repeat our assumptions in Part I, in adopting aninstanta-
neoustemperature quench fromT0 toTf = 0 at timet = 0, in whichm2

φ(T) changes
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sign and magnitude instantly, concluding with the valuem2
φ = −µ2, t > 0 (and

beginning with the valuem2
φ(T0) = m2 = O(µ2), t < 0). We stress thatmφ is the

renormalized mass, containing the temperature-dependent interactions with all
fields.

3.1. The Influence of the Environment

As we observed, the most visible signal that the transition has occurred will
be the presence of topological defects, solutions to theclassicalequations of
motionδS[8, χ ] = 0, withχn = 0. These are global vortices in the field, around
which the field phaseθ (8(x) = h(x) ei θ (x)) changes by 2π . Considered as tubes
of ’false’ vacuum, with cold thicknessO(µ−1), they have energy per unit length
σ = O(µ2/λ) (up to multiplicative logarithmic terms ln(µξdef), whereξdef is vortex
separation). In particular, the field8 vanishes along the vortex core. We can
therefore use line-zeroes to track classical defects (Rajantie, 2001; Rivers, 2001).
Since classical defects are specific field profiles we need to be able to distinguish
between different classical system-field configurations evolving after the transition.
As a result, we are only interested in the field-configuration basis for the density
matrix.

Since the effects of (bosonic) environments are cumulative each contribution
to the environment increases the diffusion term and thereby speeds up the onset of
classical behavior. Thus, any part of the environment sets anupperbound ontD.
For large (but not infinite)N a one-loop approximation is sufficient for calculating
tD due toχ fields alone. It is convenient not to have complex arguments and we use
φ to denote the real Cartesian doublet (φ1, φ2) andχ to denote (χ1, χ2, . . . , χn),
etc. At timet > 0, the reduced density matrixρr[φ+< , φ−< , t ] = 〈φ+< |ρ̂r (t)|φ−< 〉 is
now

ρr[φ
+
< , φ−< , t ] =

∫
Dχ

∫
Dφ> ρ[φ+< , φ> , χ ;φ−< , φ> , χ ; t ], (2)

whereρ[φ+< , φ> , χ ;φ−< , φ> , χ ; t ] is the full density matrix,Dφ> = Dφ> 1Dφ> 2,
andDχ =∏N

1 Dχn.
The environment will have had the effect of making the system effectively

classical onceρr(t) is essentially diagonal. This is very different from the late-time
dephasing effects found in Habibet al.(1996) and Cooperet al.(1997), which rely
on time-averaged diagonalization. More details are given in Part I and Lombardo
et al. (2001). Quantum interference can then be ignored and we obtain a classical
probability distribution from the diagonal part ofρr(t), or equivalently, by means
of the reduced Wigner function. For weak coupling (see Part I and Lombardoet al.,
2000) there will be no ’recoherence’ at later times in which the sense of classical
probability will be lost (Antuneset al., 2001).
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The temporal evolution ofρr[φ+< , φ−< , t ] is

ρr[φ
+
< , φ−< , t ] =

∫
Dφ+i<

∫
Dφ−i< Jr[φ

+
f< , φ−f< , t | φ+i< , φ−i< , t0] ρr[φ

+
i< , φ−i< , t0],

whereDφ+< = Dφ+< 1Dφ+< 2, etc., andJr is the reduced evolution operator.
In order to estimate the functional integration that defines the reduced prop-

agator, we perform a saddle point approximation

Jr[φ
+
f< , φ−f< , t | φ+i< , φ−i< , t0] ≈ expi A

[
φ+cl

< , φ−cl
<

]
,

whereφ±cl
< is the solution of the equation of motionδReA

δφ+<
|φ+< =φ−<= 0 with bound-

ary conditionsφ±cl
< (t0) = φ±i< andφ±cl

< (t) = φ±f< . It is very difficult to solve this
equation analytically. In order to make it tractable we assume that the system-
field contains only one Fourier mode withEk = Ek0 for the reason indicated earlier,
that the long-wavelength modes, for which|k0|2 < µ2, increasingly bunch about
a wave numberk0 < µ which diminishes with time. However, unlike in Part I, we
are interested in more than thek0 = 0 mode.

For such smallk0 the classical solution is of the form

φcl
<a (Ex, s) = fa(s, t) cos(Ek0 · Ex),

where fa(s, t) satisfies the boundary conditionsfa(0, t) = φi< a and fa(t, t) =
φf< a. Qualitatively, fa(s, t) grows exponentially withs for t ≤ tsp, and oscillates
for tsp < s < t whent > tsp. For t ≤ tsp, we approximate it by

fa(s, t) = φi<a
sinh[ω0(t − s)]

sinh(ω0t)
+ φf<a

sinh(ω0s)

sinh(ω0t)
, (3)

whereω2
0 = µ2− k2

0.
We saw in Part I (see also Karra and Rivers, 1997) that the linear approxima-

tion is reasonable until almosttsp, where the spinodal timetsp is defined as the time
for which 〈|8< |2〉t ∼ η2. That is,tsp is the time it takes for the field to populate
the ground states of the model. As a result,tsp is given by

exp[2µtsp] ≈ O
(
η2

µTc

)
. (4)

The exponential factor in Eq. (4), as always, arises from the growth of the unstable
long-wavelength modes. The factorT−1

c comes from the coth(βω/2) factor that
encodes the initial Boltzmann distribution at temperatureT0∼> Tc. Thus,

µtsp∼ ln

(
η√
µTc

)
. (5)

As in Part I, it is sufficient to calculate the correction to the usual unitary
evolution coming from the noise kernel. For clarity we drop the suffix f on the final
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state fields. If1 = (|8+|2− |8−|2)/2 for thefinal field configurations, then the
master equation forρr(φ+< , φ−< , t) is

i ρ̇r = 〈φ+< |[H, ρ̂r]|φ−< 〉 − iV12D(k0, t)ρr + · · · (6)

The time-dependent diffusion coefficientDχ (k0, t) that determines the effect of
theχ fields on the onset of classical behavior acquires a contributionDn(k0, t)
from each fieldχn,

Dn(k0, t) = g2

16N

∫ t

0
ds u(s, t)

[
ReG2

++(2k0; t − s)+ 2 ReG2
++(0; t − s)

]
.

(7)
where for the case of an instantaneous quench,u(s, t) = cosh2ω0(t − s) when
t ≤ tsp, and is an oscillatory function of time whent > tsp. TheG++ are the long-
wavelength correlation functions of theχ fields for the appropriate contours in the
closed time-path.

The contribution from the explicitly environmentalχ fields, Dχ (k0, t) =∑
n Dn(k0, t), takes the form

Dχ (k0, t) ∼ g2T2
0

µ3
ω0 exp[2ω0t ], (8)

largely from the end-point behavior ats= 0 of the integral (7). Fort > tsp, the
diffusion coefficient stops growing and oscillates aroundD(k0, t = tsp).

The environment is also constituted by the short-wavelength modes8> of
the self-interacting field. This gives an additional one-loop contribution toD(k0, t)
with the sameu(s) but aG++ constructed form the short-wavelength modes of the
8-field as it evolves from the top of the potential hill. Omitting this mode in its
calculation just means that any decoherence timetD obtained from theχn alone
will be an upper bound on the true decoherence time. An estimate of the8-field
contribution, based on the inclusion of tadpole diagrams alone, suggests that, with
no 1/N damping, the8> modes have the same effect on the dissipation, quali-
tatively, as all the environmental fieldsχn put together. At an order of magnitude
level we can ignore the8> modes in the calculation oftD, for which theχ fields
alone give a strong bound. We cannot ignore them in the calculation of the defect
density, since it is the coarse-graining of the order parameter field that renders the
line-zero density finite.

We estimatetD by solving (in the one-loop approximation) for the off-diagonal
elements of the reduced density matrix

ρr
[
φ+< , φ−< ; t

]
∼< ρu

r

[
φ+< , φ−< ; t

]
exp

[
−V0

∫ t

0
ds Dχ (k0, s)

]
, (9)

whereρu
r is the solution of the unitary part of the master equation (i.e. without

environment). In (9), 0 = O(µ4(φ̄δ)2), φ̄ = (|8+< | + |8−< |)/2µ, and δ =
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(|8+< | − |8−< |)/2µ. V is understood as the minimal volume inside which there
is no possibility for coherent superpositions of macroscopically distinguishable
states for the field. We take this asO(µ−3) sinceµ−1 is the thickness of an indi-
vidual vortex. Inside this volume we do not discriminate between field amplitudes
which differ byO(µ), and therefore, as in Part I, takeδ2 ∼ O(1). Similarly, we set
φ̄2 ∼ O(α/λ), whereλ ≤ α ≤ 1 is to be determined self-consistently.

The decoherence of the long-wavelengthk0-mode by the environment occurs
when the nondiagonal elements of the reduced density matrix are much smaller
than the diagonal ones. In (9) this corresponds to when

1∼> V0
∫ tD

0
ds Dχ (k0, s), (10)

sinceρu
r [φ+< , φ−< ; t ] is increasingly independent ofδ. See Part I for more details.

Because the diagonalization ofρr (t) occurs in time as anexponentialof anexpo-
nential, decoherence occurs extremely quickly, at time

ω0tD∼> ln

(
η

Tc
√
α

)
. (11)

Forω ≈ µ, the value ofα is determined asα ' √µ/Tc from the condition that
at timetD, 〈|φ|2〉t ∼ αη2. Sinceα ¿ 1, in principle, the field has not diffused far
from the top of the hill before it is behaving classically.

It follows from Eq. (11) that the upper bound ontD and, we assume,tD
itself, increases ask0→ µ, although we need a better approximation to see how,
in detail. However, we stress that as far as counting vortices is concerned, all
that matters is how the power in the field fluctuations is distributed. The distance
between defects is the relevant wavelength, and not defect size. Withω0 ≈ µ for
the relevantk2

0 = O(µ/tD) it follows that 1< µtD ≤ µtsp, with

µtsp− µtD ' 1

4
ln

(
Tc

µ

)
. (12)

While the environment is very effective at decohering adjacent field config-
urations, it has much less impact on the diagonal matrix elements

Pt [φ< ] = 〈φ< |ρr (t)|φ< 〉,
which give the relative probability that the field takes the valueφ< at timet , once
the theory is classical. This is all that is needed to calculate equal-time correlation
functions ofφ< , and thereby (Halperin, 1981; Liu and Mazenko, 1992) to calculate
the density of classical defects by itemizing their zero-field cores.

We know that for very early times, the Gaussian approximation forρr [φ< ,
φ< , t ] is valid, although we should not interpret it as a probability then. We shall
now argue that can we use the approximationPt [φ< ] ' ρu

r [φ< , φ< , t ], compatible
with (9), at least until timetD. That is, although the environment is crucial in
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makingρt off-diagonal, it has much less effect on the diagonal matrix elements,
which are the ones we use for calculation.

4. CLASSICAL EQUATIONS

Our analysis of the onset of decoherence shows that it makes little sense
to talk about line-zeroes of the field beforetD of Eq. (11), since they would be
expected to suffer from quantum interference, as well as having a density that is
strongly dependent on the scale separatingφ< from φ> .

By the timetsp the Gaussian approximation has broken down, and the Gold-
stone field phaseθ will have decoupled from the heavyh-mode. From here on-
wards it is the massless Goldstone modes whose causal propagation controls field
ordering. This is the last ingredient in turning a line-zero into a classical vortex.

This requires both classical probabilities and classical equations. Let us con-
sider probabilities first. The reduced Wigner function is defined as

Wt [φ< , π< ] =
∫
Dη< eiπ< η< 〈φ< − η< |ρr(t)|φ< + η< 〉 (13)

whereby

P[φ< ]t =
∫
Dπ< Wt [φ< , π< ] = 〈φ< |ρr(t)|φ< 〉 (14)

is the probability density for field configurations.
For t ≥ tD of (11), Wt [φ< , π< ] is positive, at least for long wavelengths,

and can be identified with the Fokker–Planck probability distribution function
PFP

t [φ< , π< ], from which P[φ< ]t can be equally identified as the Fokker–Planck
probability

PFP[φ< ]t =
∫
Dπ< PFP

t [φ< , π< ]. (15)

Suppose we can calculateP[φ< ]t for timest ≥ tD. This permits us to calculate
the equal-timen-point correlation functions

G(n)
<ab . . c(x1, . . . , xn, t) =

∫
Dφ< PFP

t [φ< ]φ<a (x1) . . . φ< c(xn). (16)

As we know (Halperin, 1981; Liu and Mazenko, 1992), equal-time correlators
are all we need to calculate densities of zeroes (line-zeroes, etc.). Moreover, the
dominance ofP[φ< ]t by long-wavelength modes permits the adoption of a single
decoherence timetD from Eq. (12). However, if all we are going to use isP[φ< ]t ,
the diagonal matrix element ofρt , there is no real need to construct the Wigner
function. We can just do a calculation ofP[φ< ]t from the start, along the lines of
Boyanovskyet al. (1994, 1995, 1998).
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To see the appearance of individual defects is more difficult, and requires
classical stochastic (Langevin) equations. We have yet to complete the analysis.
However, as a starting point let us pretend that the only environment is theχ fields.
In the usual fashion, one can regard the imaginary part ofδA as coming from
a single noise sourceξ (x), with a Gaussian functional probability distribution
given by (Gleiser and Ramos, 1944; Greiner and Muller, 1997; Lombardo and
Mazzitelli, 1996)

P[ξ ] = Nξ exp

{
−1

2

∫
d4x

∫
d4yξ [g2N]−1ξ

}
, (17)

whereNξ is a normalization factor, andN(x − y) ∝ ReG2
++(x − y) for the sin-

gle χ -loop. Indeed, we can write the imaginary part of the influence action as a
functional integral over the Gaussian fieldξ (x),∫

Dξ P[ξ ] exp

[∫
d4x − i {1(x)ξ (x)}

]
= exp

{
−i
∫

d4x
∫

d4y [1(x)g2N(x, y)1(y)]

}
.

Therefore, the coarse-grained effective action (see Part I for definitions) can
be rewritten as

A[φ+, φ−] = −1

i
ln
∫
Dξ P[ξ ] exp

{
i Seff[φ

+, φ−, ξ ]
}

, (18)

where

Seff[φ
+, φ−, ξ ] = ReA[φ+, φ−] −

∫
d4x [1(x)ξ (x)]. (19)

Taking the functional variation

δSeff[φ+, φ−, ξ ]

δφ+a

∣∣∣∣
φ+a =φ−a

= 0 (20)

gives the “semiclassical Langevin equation” for the system-field (Gleiser and
Ramos, 1944; Greiner and Muller, 1997; Lombardo and Mazzitelli, 1996), (up
to factorsO(1))

¤φa(x)− µ̃2φa + λ̃φa(x)φ2
b(x)+ g2φa(x)

∫
d4y K(x, y)φ2

b(y) = φa(x)ξ (x),

(21)
where we have assumed only quadratic interactions, andK is the (assumed) com-
mon mass retarded loop, arising from the real part ofδA. µ̃ andλ̃ are the ’renor-
malized’ constants by virtue of the coupling with the environment.
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To estimate the size ofg2φa(x)
∫

d4y K(x, y)φ2
b(y) in comparison with the

µ2φa term, we note first that

K ∝ T2µ2 ∼ T2
c µ

2 ∼ µ4/
√

Nλ (22)

for highT . Further, with relevant distance scales no larger thanµ−1 then, crudely,
at timetsp,

|g2
∫

d4y K(x, y) φ2
b(y)|

≤ g2
∫

d4y |K (x, y)| φ2
b(tsp)

∼ λ2 T2
c

µ
tspφ

2
b(tsp) ∼ µ2 µtsp

N1/2
¿ µ2, (23)

for large enoughN. Since the bound is even smaller at earlier times this suggests
that the dissipative term is negligible, in comparison to the mass term, until time
tsp. Equivalently, for weak coupling the damping due to the thermal environment
has a negligible effect on the quasiparticle mass at these early times.

Even though〈φa(x)ξ (x)〉 6= 0,

〈φa(x)ξ (x)〉 ≤
√
〈φa(x)φa(x)〉〈ξ (x)ξ (x)〉

≤ η
√
〈ξ (x)ξ (x)〉 (24)

(with no summation overa), which, from the behavior of the noise kernelN, can
be bounded as

〈φa(x)ξ (x)〉ξ ≤ µ2φa(x).

It follows thatφa satisfies the classical equation

¤φa(x)− µ̃2φa(x)+ λ̃φa(x)φ2
b(x) = 0 (25)

to a good approximation for timest∼< tsp. For such early times the nonlinear term
in (25) can be neglected. For times later thantsp neither perturbation theory nor
more general non-Gaussian methods are valid. For example, in quantum mechan-
ical models (without environment)seventh-order calculations in a self-consistent
δ-expansion (that effectively plays the role of a 1/N expansion in large-N calcu-
lations (Boyanovskyet al., 1994, 1995, 1998) ceases to work once the symmetry
has been fully broken (Joneset al., 2001). For such times we need to solve for
classical vortices, rather as we would solve for the evolution of vortex tangles in
superfluid4He.

In terms of the radial and angular fields Eq. (25) becomes

¤h+ [−µ̃2+ λ̃h2− (∂µθ∂
µθ )]h = 0

∂µ(h2∂µθ ) = 0. (26)
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At early times we have seen thatφ1 andφ2 are independent, and there are
no Goldstone modes. However, by the timet ≈ tsp, whenh2 ∼ η2 and is slowly
varying, it follows from the second of the equations that the Goldstone modes
have appeared. More generally, it is through the coupling of the Goldstone and
Higgs (h) modes that classical defects appear as solutions to (25), in a way that
was denied at early times.

We stress that in deriving Eq. (25) we have not had to restrict ourselves to
any particular modes in k-space. However, although Eq. (25) looks to be valid at
all times, it is only a sensible equation once field configurations have well-defined
probabilities associated to them, i.e.after decoherence. Here lies a difficulty in
that we have seen thattD depends on wavelength, with shorter wavelengths taking
longer to become classical. Although the long wavelengths with most power in
their fluctuations, that determine the separation of vortices, have become classical
by timetsp, this is an ensemble statement that cannot be applied easily to individual
vortex solutions to (26). Further, Eq. (25) couplesφ< toφ> . The effect of including
the short-wavelength modesφ> in the environment is, most likely, only a qualitative
change at a consistent one-loop level, by augmentingK in (21) with a comparable
term Kφ . There will be a further comparable nondiagonal termλ2φb

∫
Kφ φaφb.

We anticipate that the Langevin equations for the stochasticφ< will be just as one
would guess from a mode decomposition of (26) with short-wavelength modes
discarded, and terms withK and N equally ignorable. This will be pursued
elsewhere.

5. CLASSICAL DEFECTS

5.1. Line Densities and the Gaussian Approximation

As we observed, the most visible signal that the transition has occurred
will be the presence of classical topological vortices (strings), radial solutions
to the equations of motionδS[φ, χ ] = 0, with χn = 0. These are line defects
in the field, around which the field phaseθ (φ = h ei θ ) changes by 2π . We
can therefore use line-zeroes to track classical vortices (Gill and Rivers, 1995;
Rajantie, 2001; Rivers, 2001). [If we had broken anO(3) symmetry (a = 1, 2, 3)
the corresponding defects would be global monopoles, giving qualitatively similar
conclusions.]

The total line-zero densitȳz(x) for the long-wavelength mode fields is
(Halperin, 1981)

z̄i (x) = δ2[φ< (x)]|εi jk∂ jφ< 1(x)∂kφ< 2(x)|. (27)

With line-zeroes as the intersections of planes of zeroes ofφ1 andφ2 separately, we
have a phase change of±2π around the lines of intersection, but for exceptional
circumstances.
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From Eqs. (14)–(16) the evolution of the two-field correlator (G(2)
< (x, 0, t) =

G< (r, t)) can be written in terms of the unitary (reduced) density matrixρu
r . Thus,

G< (r, t) = 〈φ< (x)φ∗< (0)〉t = 1

2
δab〈φ<a (x)φ< b(0)〉t

is well understood. The unstable long-wavelength modes grow exponentially fast.
If the power spectrum of the field fluctuations is defined by

G< (r, t) =
∫

k<µ

d3k

(2π )3
P(k, t) ei k·x (28)

thenk2P(k, t) rapidly develops a “Bragg peak” atk2 = k2
0 = O(µ/t).

While the Gaussian approximation (Halperin, 1981; Lui and Mazenko, 1992)
is satisfied, the line-zero ensemble densitynzero(t) is determined completely by
theshort-distancebehavior ofG< (r, t) as

nzero(t) = 〈z̄i (x)〉t = −1

2π

G′′< (0, t)

G< (0, t)
. (29)

SinceG< (r, t) has short-wavelength modes removed,G< (0, t) is finite.
Further, for this period when the self-consistent approximation is valid, the

field energy〈E〉t of the system fieldφ< in a box of volumeV becomes

〈E〉t = V[〈|∇φ< |2〉t + λ(η2− 〈|φ< |2〉t )2]

= V[2πnzero(t)G< (0, t)+ λ(η2− G< (0, t))2]

= 2πLzero(t)G< (0, t)+ V[λ(η2− G< (0, t))2]. (30)

As before,χ -field fluctuations are absorbed in the definition ofµ2. Equation (30)
is obtained by using (29), andLzero(t) = Vnzero is the total length of line-zeroes,
on a scaleµ−1, in the box of volumeV.

We understand Eq. (30) as follows. Suppose it were valid from timet = 0,
when G< (0, 0)= O(µ2), until time t = tsp. At early times most of the system
field energy (proportional toV) is in fluctuations not associated with line-zeroes,
arising from the field potential. As time passes their energy density decreases as the
system field approaches its posttransition value, becoming approximately zero. In
part, this is compensated by the term, arising from the field gradients, proportional
to the lengthLzero of line-zeroes, whose energy per unit length increases from
O(µ2) to O(η2). At time tsp, when the fluctuation energy can be ignored, we find
(Kavoussanakiet al., 2000)

〈E〉t ∼ Lzeroσ, (31)

essentially the energy required to produce a vortex tangle of lengthLzero (up
to O(1) factors from the logarithmic tails). Although these line-zeroes have the
topological charge and energy of vortices, they are not yet full-fledged defects.
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Initially, G< (r, t) is very dependent on the value of the cutoff. As a result, line-
zeroes are extremely fractal, with a separation proportional to the scale at which
they are viewed, and are certainly not candidates for defects. Once the ’Bragg
peak’ atk = k0 is firmly in the intervalk < µ, nzero(t) becomes insensitive to a
cutoff O(µ−1). This means that line-zeroes are straight at this scale, although they
can be approximately random walks at much larger scales. For sufficiently weak
couplings of their density this has happened by timetsp. The final coupling of radial
to angular modes that turns these proto-vortices into vortices incurs no significant
energy change, andnzero of (29) is a reliable guide for the initial vortex density.

6. FINAL COMMENTS

The mechanism for vortex production that we have proposed here has two
parts. First, the environment renders the order parameter field classical at early
times tD∼< tsp, by or before the transition is complete. Second, classical defects
evolve from line-zeroes whose resultant density can already be inferred in the
linear regime, but whose specific attributes are a consequence of the nonlinear
Langevin equations at the spinodal timetsp.

This is very different from traditional explanations, and we conclude with a
brief summary of them.

An early explanation, originally due to Kibble (1976), and still of common
currency, is that thermal fluctuations in the Ginzburg regime might lead to the
production of vortices, again at early times. The reason is the following: once we are
belowTc, the Ginzburg temperatureTG < Tc signals the temperature above which
there is a significant probability for thermal fluctuations between one degenerate
ground state and another on the scale of the correlation length at that temperature.
That is, the thermal energy in such a fluctuation matches the energy required to
pass over the hump of the unstable minimum. This picture presupposes a slow
quench, and cannot be accommodated in the instantaneous quench approximation
that we have used here. However, our suggestion that defects only appear at, or
about, the spinodal timetsp at a density given by the density of line-zeroes is totally
at variance with this picture, and thermal activation is not the relevant mechanism.

In fact, this was recognized early by Kibble himself (Kibble, 1980), with his
later emphasis on strong causal bounds. It had been noted earlier (Kibble, 1976)
that the field must behave independently in initially space-like separated regions.
When these domains with different vacua become causally connected we expect
defects to link them. This gives late-time predictions that we cannot address with
our early-time analysis. A more powerful variant on this theme identifies the time
at which defects first appear as the time the adiabatic (long-distance) correlation
decreases at the speed of light. This time, and the resultant density, depends on
the quench timeτQ. There are also difficulties with this in that we have seen
that the separation of line-zeroes are obtained from the short-distance behavior
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of G< (r, t). The argument was not posed for instantaneous quenches of the type
discussed above, which correspond toτQ = O(µ−1) for which, if taken literally,
it would give defect formation from timeO(µ−1), again incorrect. We are in the
process of extending the analysis above to slower quenches to make the comparison
with the predictions of Kibble (1980) more useful.

Subsequently, two approaches have been adopted. In the first, motivated by
condensed matter physics, for which similar causal arguments apply (Zurek, 1996),
phenomenological classical stochastic Langevin equations have been proposed
(e.g. see Antuneset al., 1999) for the evolution of the fields from early times.
These are the counterpart of the phenomenological time-dependent Ginzburg–
Landau equations of condensed matter and assume classical probabilities from
the beginning. However, unlike the intermediate-time Langevin equations derived
previously, these equations do not have multiplicative dissipation and multiplica-
tive noise (Gleiser and Ramos, 1944; Greiner and Muller, 1997; Lombardo and
Mazzitelli, 1996). The second approach is intrinsically quantum mechanical, treat-
ing the quantum field as a closed system. Although classical correlations are present
in the localization of the Wigner function (Guth and Pi, 1991), even for such closed
systems, it is difficult to identify defects easily, given that there are no classical
probabilities at early times. At best, there is late-time dephasing (Habibet al.,
1996). The mechanism proposed in this paper is totally different.

ACKNOWLEDGMENTS

F.C. Lombardo and F.D. Mazzitelli were supported by Universidad de Buenos
Aires, CONICET (Argentina), Fundaci´on Antorchas, and ANPCyT. R.J. Rivers
was supported in part by the COSLAB programme of the European Science Foun-
dation. We also thank the organizers of the Peyresq meeting.

REFERENCES

Antunes, N. D., Bettencourt, L. M. A., and Zurek, W. H. (1999). Vortex string formation in a 3-D U(1)
temperature quench,Physical Review Letters82, 2824.

Boyanovsky, D., Cormier, D., de Vega, H. J., Holman, R., and Prem Kumar, S. (1998). Nonperturbative
quantum dynamics of a new inflation model,Physical Review D: Particles and Fields57, 2166.

Boyanovsky, D., de Vega, H. J., and Holman, R. (1994). Nonequilibrium evolution of scalar fields in
FRW cosmologies I,Physical Review D: Particle and Fields49, 2769.

Boyanovsky, D., de Vega, H. J., Holman, R., Lee, D. -S., and Singh, A. (1995). Dissipation via particle
production in scalar field theories,Physical Review D: Particles and Fields51, 4419.

Cooper, F., Habib, S., Kluger, Y., and Mottola, E. (1997). Nonequilibrium dynamics of symmetry
breaking in lambda PHI**4 field theory,Physical Review D: Particles and Fields55, 6471.

Gill, A. J. and Rivers, R. J. (1995). The dynamics of vortex and monopole production by quench
induced phase separation,Physical Review D: Particles and Fields51, 6949.

Gleiser, M. and Ramos, R. O. (1994). Microphysical approach to nonequailibrium dynamics of quantum
fields,Physical Review D: Particles and Fields50, 2441.



P1: GRA

International Journal of Theoretical Physics [ijtp] pp657-ijtp-454172 November 11, 2002 21:53 Style file version May 30th, 2002

2160 Rivers, Lombardo, and Mazzitelli

Greiner, C. and Muller, B. (1997). Classical fields near thermal equilibrium,Physical Review D:
Particles and Fields55, 1026.

Guth, A. and Pi, S. Y. (1985). The quantum mechanics of the scalar field in the new inflationary
universe,Physical Review D: Particles and Fields32, 1899.

Habib, S., Kluger, Y., Mottola, E., and Paz, J. P., (1996). Dissipation and decoherence in mean field
theory,Physical Review Letters76, 4660.

Halperin, B. I. (1981). InPhysics of defects, editd by Balian, R., Kleman, M., and Poirier J. P. (North-
Holland, New York, 1981).

Jones, H. F., Parkin, P., and Winder, D. (2001). Quantum dynamics of the slow rollover transition in
the linear delta expansion,Physical Review D: Particles and Fields63, 125013.

Karra, G. and Rivers, R. J. (1997). Initial vortex densities after a quench,Physics Letters B414, 28.
Kavoussanaki, E., Rivers, R. J., and Karra, G. (2000). The onset of phase transitions in condensed

matter and relativistic QFT,Condensed Matter Physics3, 133.
Kibble, T. W. B. (1976). Topology of cosmic domains and strings,Journal of Physics A: Mathematical

and General9, 1387.
Kibble, T. W. B. (1980). Some implications of a cosmological phase transition,Physics Reports67,

183.
Liu, F. and Mazenko, G. F. (1992). Phase ordering dynamics in the continuum q state clock model,

Physical Review B: Condensed Matter46, 5963.
Lombardo, F. C. and Mazzitelli, F. D. (1996). Coarse graining and decoherence in quantum field theory,

Physical Review D: Particles and Fields53, 2001.
Lombardo, F. C., Mazzitelli, F. D., and Monteoliva, D. (2000). Classicality of the order parameter

during a phase transition,Physical Review D: Particles and Fields62, 045016.
Lombardo, F. C., Mazzitelli, F. D., and Rivers, R. J. (2001). Classical behavior after a phase transition,

Physics Letters B523, 317.
Rajantie, A. (2002). Formation of topological defects in gauge field theories,International Journal of

Modern Physics A17, 1–44.
Rivers, R. J. (2001). Zurek–Kibble causality bounds in time-dependent Ginzburg–Landau theory and

quantum field theory.Journal of Low Temperature Physics, June/July 2001 (General article in the
proceedings of the ULTI conference, Finland, 2001; cond-mat/0105171).

Zurek, W. H. (1996). Cosmological experiments in condensed matter systems,Physics Reports276,
177.


