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Classical Behavior After a Phase Transition:
Il. The Formation of Classical Defects
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Classical defects (monopoles, vortices, etc.) are a characteristic consequence of many
phase transitions of quantum fields. Most likely these include transitions in the early
universe and such defects would be expected to be present in the universe today. We
continue our analysis of the onset of classical behavior after a second-order phase
transition in quantum field theory and show how defects appear after such transitions.
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1. INTRODUCTION

Because phase transitions take place in a finite time, causality guarantees that,
even for continuous transitions, correlation lengths remain finite. Order parameter
fields become frustrated, and topological defects arise so as to reconcile field
phases between different correlated regions (Kibble, 1976; Zurek, 1996).

Ahuge variety of defects is possible, according to the complexity of the initial
symmetry and its breaking (Kibble, 1980). Monopoles can easily overwhelm the
energy density of the universe, while cosmic strings (vortices) may be the source of
high-energy cosmic rays and lensing, as well as contributing to structure formation
(although they are not now thought to be its determining factor). More complex
strings can exacerbate baryogenesis.

As solutions to the classical field equations, these defects have nonpertur-
batively large energies, commensurate with the temperature scale at which the
transition takes place. Thus, for example, cosmic strings produced in the early uni-
verse will be expected to have an energy/unit length (tensior)(10'® GeVY,
where 18° GeV is the estimated GUT scale. For this reason alone, defects are
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manifestly classical entities after the transition, whose evolution can be handled
successfully through the solution of the classical equations that they satisfy (e.g. the
Nambu—Goto action for cosmic strings). Nonetheless, their origin in the beginnings
of the phase transition that spawned them is quantum mechanical. There are further
complications according as the symmetries are global or gauged (Rajantie, 2001),
but the simplest of all are topological global vortices (or strings) and it is these
that we shall consider here.

Having set up the model, the subsequent sections of this work concern the
transition from quantum field theory to classical field theory. We know the mech-
anism for this, the decohering effects of the quantum environment with which
the long-wavelength modes of the order parameter fields interact (Lombardo and
Mazzitelli, 1996). Field or phase ordering and classical defect formation are con-
trolled by long-wavelength modes. We consider these modes to constitute the open
“system” which undergoes quantum decoherence due to an “environment” which
consists of everything else (short-wavelength modes and all other fields interact-
ing with the order parameter fields). This permits the calculation of a decoherence
time tp after the onset of the transition, after which the long-wavelength modes
behave classically, subject to generalized Langevin equations. At the same time,
the Wigner function can now be interpreted as a Fokker—Planck probability density
and we can calculate correlation functions (Lombagtial., 2000). Given that the
correlation functions are now defined in terms of classical probabilities, classical
defects can be identified.

The major characteristic of defects is their topological charge. We conclude
by showing how localized topological charge precedes the appearance of defects,
and gives an estimate of defect densities when they do appear.

For an instantaneous quench the onset of classical behavior has already been
discussed by us in an earlier paper in these proceedings, henceforth known as
Part I, and elsewhere Lombardbal.(2001), and we shall not repeat all the details
here. What we shall do is elucidate those properties of the classicalization due to
the environment that are relevant to defect formation.

We conclude by briefly comparing our approach to others for the production
of defects. This work has yet to be completed, and will be continued elsewhere.

2. THE MODEL: COUPLING ORDER PARAMETER FIELDS
TO THE ENVIRONMENT

The most immediate difference between the model here and that of Part | of
this paper lies in the replacement of the single real scalar order parameter field
there by a complex field. This is the simplest field permitting acceptable defects,
in the form of global vortices. [The defects of a single scalar field with braken
symmetry, domain walls, would dominate the energy density of the universe if
they were present.] As in Part |, we take tefield to interact with a collection



Classical Behavior After a Phase Transition: Il 2147

of real scalar environmental fielgg, (n = 1....,N). It is no loss of generality to
take all couplings tg -fields identical, and aly, masses identical, to give a model
with U (1) x O(N) or O(2) x O(N) symmetry broken tdD(N). However, the
O(N) symmetry of the model, while tactically useful, is accidental and purely for
calculational convenience. We adopt a Cartesian field BRsis(¢1 + i ¢2)/+/2
because in the linear regime at the early times that are most relevantitpars]

¢» behave independently. The action is

S, x] = Sysl ®] + Snd x] + Sl @, x1 1)

where we have made a provisional separation into system-field and environment
with which it interacts, where

1 1 A
Sysl®] = f d*x {Eamaaﬂcba + §u2¢§ - Z(¢>§)2}

is the action for theéj fields @ = 1, 2) (we assume summation over repeated index
a), with «2 > 0, and

N
1 1
Sndx] = E /dAX {éaanaan - §m2X§}
n=1

and

N
g 4, ,2 2
Sl @ x]=—) —= [ d*x@z(X)x5(X),
A ;smf X

describe the environment-fielgg and its interaction with them. These are taken
to be weakly coupled, with $ 1/v/N > g ~ 1. Meanwhile, for simplicity the
xn Masses are fixed et >~ u.

The model has a continuous transition for the breaking o€&{® symmetry
at the critical temperatur® where, in units in whictkg = 1, T2 = O(1?/~/N1)
> u?. We shall assume that the initial states of the system and environment are
both thermal, at temperaturéds= O(T.) > T.. In this way thed field is peaked
strongly in field space about the unstable maximum. Incorporating the hard thermal
loop “tadpole” diagrams of thg (and ®) fields in the® mass term leads to the
effective action ford quasiparticles,

1 1 A
] = / d*x {Eamaa“qba - Emi(To)qf\ - Z(¢§)2}

wherem?(To) = —u2(1— T¢/T2) = M? > 0. Asin Part |, we can take an initial
factorized density matrix at temperatufg of the form s[To] = po[Tol 2y [ Tol.
wheregg [ To] is determined by the quadratic part@fst[CD] andp, [To] by Snd x1-
That is, the many, fields have a large effect ab, but thed-field has negligible
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effect on they,. This is crucial for the validity of our approximation. More details
are given in Part I.

In fact, with defects in mind, we need to perform a further factorization
to isolate the long-wavelength modes of the system-field. As we stressed, the
decohering agents are not only the environment-figiglswhich have already
been introduced but also the short-wavelength modes (Lombardo and Mazzitelli,
1996) of the self-interacting-field.

As in Part I, we split the fields initially a® = &< + ®. (and¢, = ¢<a +
¢-a), Where the system-fieldi< contains the modes with wavelengths longer than
the critical valugw ! and the bath or environment-fiedel. contains wavelengths
shorter thanw 1. This is a natural division, since modes with wavelengths shorter
than . ~! are stable and modes with longer wavelengths unstable. Further, the
short-wavelengths explore the interior of classical vortices, irrelevant for counting
them. However, once the power in the fluctuations has moved to long-wavelength
modes, with wavenumbég < u, the exact delineation is unimportant, and shorter
wavelength modes can be included in the “system.” With this in mind a more
realistic decomposition into 'system’ and 'environment’ is not (1), but

g, x] = %yst[q)<] + S X, P51+ Sni[P<, x, P51,
with u the demarcating momentum, where

1 1 A
SSyst[q)<] = fd4X {Ea/t¢<aa#¢<a + Eﬂz‘bga - Z((pga)z} !
and

1 1 A
S ®>, x] = / d*x {58H¢>aa“¢>a - Euzqﬁfa - Z(¢Ea)2}
N 1 1
4 2.2
+;/d X {EaanaMXn - ém Xn} )
Nog
S[®<, @5, x] == 8N / d*x $Z, () x3(X)
n=1

-3 / A% [$2, ()92 5(X) + 2p<a (X)b<p(X)b>a ()5 b(X)].

All terms omitted in the expansion are not relevant for the one-loop calculations
for the long-wavelength modes that we shall now consider.

3. THE SIMPLEST TRANSITION: INSTANTANEOUS QUENCH

For simplicity we repeat our assumptions in Part |, in adoptinghatanta-
neoudemperature quench fromyto T = O attimet = 0, in whichmﬁ(T) changes
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sign and magnitude instantly, concluding with the vaffe= —.?,t > 0 (and
beginning with the valuenj(To) = m* = O(u?), t < 0). We stress that, is the
renormalized mass, containing the temperature-dependent interactions with all
fields.

3.1. The Influence of the Environment

As we observed, the most visible signal that the transition has occurred will
be the presence of topological defects, solutions tocthssical equations of
motion§ § @, x] = 0, with x, = 0. These are global vortices in the field, around
which the field phasé (®(x) = h(x) €°®) changes by 2. Considered as tubes
of 'false’ vacuum, with cold thicknes®(u.~1), they have energy per unit length
o = O(u?/2) (up to multiplicative logarithmic terms I ger), Wheretqeris vortex
separation). In particular, the fiel# vanishes along the vortex core. We can
therefore use line-zeroes to track classical defects (Rajantie, 2001; Rivers, 2001).
Since classical defects are specific field profiles we need to be able to distinguish
between different classical system-field configurations evolving after the transition.
As a result, we are only interested in the field-configuration basis for the density
matrix.

Since the effects of (bosonic) environments are cumulative each contribution
to the environment increases the diffusion term and thereby speeds up the onset of
classical behavior. Thus, any part of the environment setgparrbound ontp.

For large (but not infiniteN a one-loop approximation is sufficient for calculating

tp due toy fields alone. Itis convenient not to have complex arguments and we use
¢ to denote the real Cartesian doublgt,(¢,) and x to denote g1, x2, ..., xn),

etc. At timet > 0, the reduced density matrix[¢Z, o=, t] = (@F |0 (V)|9p2) is

now

T, b2 t] = /DX/D¢> ot oo xids do it @)

wherep[oZ, ¢, x; =, ¢>, x;t] is the full density matrixD¢s = D¢s 1D,
andDy = ]_[;\‘ Dixn.

The environment will have had the effect of making the system effectively
classical once,(t) is essentially diagonal. This is very different from the late-time
dephasing effects found in Hab#ibal. (1996) and Coopeat al.(1997), which rely
on time-averaged diagonalization. More details are given in Part | and Lombardo
et al. (2001). Quantum interference can then be ignored and we obtain a classical
probability distribution from the diagonal part pf(t), or equivalently, by means
of the reduced Wigner function. For weak coupling (see Part | and Lomieaedo
2000) there will be no 'recoherence’ at later times in which the sense of classical
probability will be lost (Antunegt al,, 2001).
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The temporal evolution o [¢F, ¢, t]is

oL, ¢, t] = / Dot / Doie I, dier t | bk, dic, to] peldit s piz, tol,

whereD¢l = D¢t D¢l ,, etc., andl; is the reduced evolution operator.
In order to estimate the functional integration that defines the reduced prop-
agator, we perform a saddle point approximation

i, de .t L, iz, to] ~ expi Al 9],

wheregZ® is the solution of the equation of motidf%* |_,-= 0 with bound-
ary conditionsp®(to) = ¢= and¢=®(t) = ¢ . It is very difficult to solve this
equation analytically. In order to make it tractable we assume that the system-
field contains only one Fourier mode with= RO for the reason indicated earlier,
that the long-wavelength modes, for whigd|2 < w2, increasingly bunch about
a wave numbeky < © which diminishes with time. However, unlike in Part I, we
are interested in more than tkg= 0 mode.

For such smalkg the classical solution is of the form

L (%, 8) = fa(s, 1) cosko - X),

where fa(s, t) satisfies the boundary conditiorfg(0,t) = ¢i<a and fu(t, t) =
di<a. Qualitatively, f4(s, t) grows exponentially wits for t < tsp, and oscillates
fortsp < s < t whent > tg,. Fort < tsp, we approximate it by

sinhfwg(t — S)] sinh(wps)

fa(s, t) = ¢i<aW <2 Sinhioot) sinh(ot) ' ©

wherews = u? — kg.

We saw in Part | (see also Karra and Rivers, 1997) that the linear approxima-

tion is reasonable until almogp, where the spinodal tintg, is defined as the time
for which (|®<|?); ~ n?. That is,tsp is the time it takes for the field to populate
the ground states of the model. As a resiyjtis given by

n?

explautl ~ O (). @

uTe
The exponential factor in Eq. (4), as always, arises from the growth of the unstable
long-wavelength modes. The fact®r! comes from the cotiw/2) factor that
encodes the initial Boltzmann distribution at temperafiyre T.. Thus,

jtep~ In («/Z_T) . (5)

As in Part |, it is sufficient to calculate the correction to the usual unitary
evolution coming from the noise kernel. For clarity we drop the suffix f on the final
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state fields. IfA = (|®*|?> — |®~|?)/2 for thefinal field configurations, then the
master equation fos (¢, ¢, t) is

ipr = (¢ 1[H, Arllp<) — iV A2D(ko, t)pr + - - - 6)

The time-dependent diffusion coefficiebt, (ko, t) that determines the effect of
the x fields on the onset of classical behavior acquires a contribudig(Ro, t)
from each fieldy,,

g2

Dn(ko, t) = 16N

/t ds us, t) [ReG3, (2ko;t —s) + 2ReG%, (0;t — )] .
0
(7)

where for the case of an instantaneous quen¢),t) = cosH wo(t — s) when
t < tsp, and is an oscillatory function of time where tg,. TheG, are the long-
wavelength correlation functions of thefields for the appropriate contours in the
closed time-path.

The contribution from the explicitly environmental fields, D, (ko, t) =
> n Dn(ko, t), takes the form

g2T2
D, (ko, t) ~ ,U«30 wo expl2wot], 8)

largely from the end-point behavior at= 0 of the integral (7). Fot > tgp, the
diffusion coefficient stops growing and oscillates arol@o, t = tsp).

The environment is also constituted by the short-wavelength médesf
the self-interacting field. This gives an additional one-loop contributidh(te, t)
with the samei(s) but aG, ;. constructed form the short-wavelength modes of the
d-field as it evolves from the top of the potential hill. Omitting this mode in its
calculation just means that any decoherence tignebtained from theg, alone
will be an upper bound on the true decoherence time. An estimate df-fredd
contribution, based on the inclusion of tadpole diagrams alone, suggests that, with
no 1/N damping, thed. modes have the same effect on the dissipation, quali-
tatively, as all the environmental fielglg put together. At an order of magnitude
level we can ignore thé. modes in the calculation df, for which they fields
alone give a strong bound. We cannot ignore them in the calculation of the defect
density, since it is the coarse-graining of the order parameter field that renders the
line-zero density finite.

We estimatdy by solving (in the one-loop approximation) for the off-diagonal
elements of the reduced density matrix

t
oot 62it] <o [0t 1] exp[—vr fo ds D, (ko s)], ©)

wherep; is the solution of the unitary part of the master equation (i.e. without

environment). In (9), T = O(u4(#5)?), ¢ = (|®%| + |P=[)/21, and § =
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(1% — |®Z1)/2u. V is understood as the minimal volume inside which there
is no possibility for coherent superpositions of macroscopically distinguishable
states for the field. We take this &%) sinceu~* is the thickness of an indi-
vidual vortex. Inside this volume we do not discriminate between field amplitudes
which differ byO(), and therefore, as in Part |, tak&~ O(1). Similarly, we set
% ~ O(a/1), wherex < o < 1is to be determined self-consistently.

The decoherence of the long-wavelenkghmode by the environment occurs
when the nondiagonal elements of the reduced density matrix are much smaller
than the diagonal ones. In (9) this corresponds to when

to
1Vr ds D, (ko, 9), (20)
0
sincep;[¢Z, ¢2;t] is increasingly independent &f See Part | for more details.
Because the diagonalization af(t) occurs in time as aaxponentiabf anexpo-
nential decoherence occurs extremely quickly, at time

woto 2 I (ch/&> . (11)

For w ~ u, the value ofx is determined as ~ /u/T. from the condition that
at timetp, (|¢|%): ~ an?. Sincea <« 1, in principle, the field has not diffused far
from the top of the hill before it is behaving classically.

It follows from Eq. (11) that the upper bound ¢ and, we assumep
itself, increases dg — u, although we need a better approximation to see how,
in detail. However, we stress that as far as counting vortices is concerned, all
that matters is how the power in the field fluctuations is distributed. The distance
between defects is the relevant wavelength, and not defect sizeaMVithu for
the relevankg = O(u/tp) it follows that 1< utp < utsp, with

Tc

1

While the environment is very effective at decohering adjacent field config-
urations, it has much less impact on the diagonal matrix elements

Pio<] = (o< lpor (D<),

which give the relative probability that the field takes the vajueat timet, once
the theory is classical. This is all that is needed to calculate equal-time correlation
functions of¢. , and thereby (Halperin, 1981, Liu and Mazenko, 1992) to calculate
the density of classical defects by itemizing their zero-field cores.

We know that for very early times, the Gaussian approximatiornpffp<,
o<, t] is valid, although we should not interpret it as a probability then. We shall
now argue that can we use the approximatip< | >~ p/'[¢<, ¢<, t], compatible
with (9), at least until timep. That is, although the environment is crucial in




Classical Behavior After a Phase Transition: Il 2153

making p; off-diagonal, it has much less effect on the diagonal matrix elements,
which are the ones we use for calculation.

4. CLASSICAL EQUATIONS

Our analysis of the onset of decoherence shows that it makes little sense
to talk about line-zeroes of the field befdge of Eqg. (11), since they would be
expected to suffer from quantum interference, as well as having a density that is
strongly dependent on the scale separatindgrom ¢- .

By the timets, the Gaussian approximation has broken down, and the Gold-
stone field phasé will have decoupled from the heayymode. From here on-
wards it is the massless Goldstone modes whose causal propagation controls field
ordering. This is the last ingredient in turning a line-zero into a classical vortex.

This requires both classical probabilities and classical equations. Let us con-
sider probabilities first. The reduced Wigner function is defined as

Wilg<, <] = /D77< €7 (e — 1)< lor(t)|p< + 1<) (13)

whereby

Ploc]: = f Drte Wi, <] = (< |r(®) <) (14)

is the probability density for field configurations.

Fort > tp of (11), Wi[¢<, <] is positive, at least for long wavelengths,
and can be identified with the Fokker—Planck probability distribution function
P/ Pl¢<, n<], from which P[¢<]; can be equally identified as the Fokker—Planck
probability

PFPge ], = / Dre PPlpe e, (15)

Suppose we can calcula®e¢- |, fortimest > tp. This permits us to calculate
the equal-timan-point correlation functions

GO Xty ooy Xn, 1) = / Do P p<ldca(Xe) . .- peclxn).  (16)

As we know (Halperin, 1981; Liu and Mazenko, 1992), equal-time correlators
are all we need to calculate densities of zeroes (line-zeroes, etc.). Moreover, the
dominance oPP[¢<]; by long-wavelength modes permits the adoption of a single
decoherence timig from Eq. (12). However, if all we are going to useR$s< ],

the diagonal matrix element @k, there is no real need to construct the Wigner
function. We can just do a calculation Bf¢< ]; from the start, along the lines of
Boyanovskyet al. (1994, 1995, 1998).
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To see the appearance of individual defects is more difficult, and requires
classical stochastic (Langevin) equations. We have yet to complete the analysis.
However, as a starting point let us pretend that the only environmentjsftakls.

In the usual fashion, one can regard the imaginary pastfohs coming from

a single noise sourcg(x), with a Gaussian functional probability distribution
given by (Gleiser and Ramos, 1944; Greiner and Muller, 1997; Lombardo and
Mazzitelli, 1996)

1
Plel = N expl - [ o' [ atyetging e | a7)
whereN; is a normalization factor, and(x — y) « ReG?H(x —y) for the sin-

gle x-loop. Indeed, we can write the imaginary part of the influence action as a
functional integral over the Gaussian figl(k),

[rerteten [ [ax-i {A(X)S(X)}]

=exp{—i / d'x / dy [A(X)GN(x, y)A(y)]}.

Therefore, the coarse-grained effective action (see Part | for definitions) can
be rewritten as

1 .
Ao*.¢ 1= In [ DePElepfisals’, 0 el (18)
where

Sels", 07 6] =ReAls” 9]~ [d'x[8(EC) (1)

Taking the functional variation

8Snlo™, ¢, €]

ne v 050 =0 20
Sa oi=ta (20

gives the “semiclassical Langevin equation” for the system-field (Gleiser and
Ramos, 1944; Greiner and Muller, 1997; Lombardo and Mazzitelli, 1996), (up
to factorsO(1))

Ofa(X) — ipa + Ada(X)5(X) + G°¢a(X) / d*y K(x, Y)¢5(y) = ¢a(x)5(x),
(21)
where we have assumed only quadratic interactionsKaistthe (assumed) com-
mon mass retarded loop, arising from the real pagtAfii andA are the 'renor-
malized’ constants by virtue of the coupling with the environment.
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To estimate the size @?pa(X) [ d*y K(x, y)p2(y) in comparison with the
w2pa term, we note first that

K oc T2u? ~ T2u? ~ pn*/v/'Na (22)

for high T. Further, with relevant distance scales no larger fhahthen, crudely,
at timetsp,

P / dy K(x, ) 3(y)]

< / d*y [K(x, y)| $2(tsy)

2T_02 2 2 Mlsp 2
~ A 1 tspdp (tsp) ~ 1 N1/2 L us, (23)

for large enoughN. Since the bound is even smaller at earlier times this suggests
that the dissipative term is negligible, in comparison to the mass term, until time
tsp. Equivalently, for weak coupling the damping due to the thermal environment
has a negligible effect on the quasiparticle mass at these early times.

Even thoughga(x)&(x)) # O,
(Ba(XE(X)) < v/ (@a(X)Pa(X)) (€ (X)E (X))
< NV (E(X)E(X)) (24)

(with no summation ovea), which, from the behavior of the noise kerni¢] can
be bounded as

(Ba(¥)E(X))e < u’da(X).
It follows that¢, satisfies the classical equation

Oa(X) — i°da(X) + Aa(X)d5(x) = O (25)

to a good approximation for times- ts,. For such early times the nonlinear term
in (25) can be neglected. For times later thgmeither perturbation theory nor
more general non-Gaussian methods are valid. For example, in quantum mechan-
ical models (without environmengeventkorder calculations in a self-consistent
3-expansion (that effectively plays the role of ANLexpansion in large-N calcu-
lations (Boyanovsket al., 1994, 1995, 1998) ceases to work once the symmetry
has been fully broken (Jones$ al,, 2001). For such times we need to solve for
classical vortices, rather as we would solve for the evolution of vortex tangles in
superfluid*He.

In terms of the radial and angular fields Eq. (25) becomes

Oh 4 [—#% + Ah? — (8,08"6)lh = 0
3, (n%3"0) = 0. (26)
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At early times we have seen that and¢, are independent, and there are
no Goldstone modes. However, by the titne ts,, whenh? ~ »? and is slowly
varying, it follows from the second of the equations that the Goldstone modes
have appeared. More generally, it is through the coupling of the Goldstone and
Higgs () modes that classical defects appear as solutions to (25), in a way that
was denied at early times.

We stress that in deriving Eq. (25) we have not had to restrict ourselves to
any particular modes in k-space. However, although Eq. (25) looks to be valid at
all times, it is only a sensible equation once field configurations have well-defined
probabilities associated to them, iafter decoherence. Here lies a difficulty in
that we have seen thigf depends on wavelength, with shorter wavelengths taking
longer to become classical. Although the long wavelengths with most power in
their fluctuations, that determine the separation of vortices, have become classical
by timetsp, this is an ensemble statement that cannot be applied easily to individual
vortex solutions to (26). Further, Eq. (25) couptesto ¢ . The effect of including
the short-wavelength modes in the environmentis, most likely, only a qualitative
change at a consistent one-loop level, by augmerkirig (21) with a comparable
term K. There will be a further comparable nondiagonal terf#y, [ Ky ¢ago.

We anticipate that the Langevin equations for the stochastiwill be just as one
would guess from a mode decomposition of (26) with short-wavelength modes
discarded, and terms witK and N equally ignorable. This will be pursued
elsewhere.

5. CLASSICAL DEFECTS
5.1. Line Densities and the Gaussian Approximation

As we observed, the most visible signal that the transition has occurred
will be the presence of classical topological vortices (strings), radial solutions
to the equations of motioAS¢, x] = 0, with x, = 0. These are line defects
in the field, around which the field phage(¢ = h €?) changes by 2. We
can therefore use line-zeroes to track classical vortices (Gill and Rivers, 1995;
Rajantie, 2001; Rivers, 2001). [If we had broken@(8) symmetry & = 1, 2, 3)
the corresponding defects would be global monopoles, giving qualitatively similar
conclusions.]

The total line-zero densityz(x) for the long-wavelength mode fields is
(Halperin, 1981)

Z/(x) = 8%[p< (X)]|€ijk 3 p< 1(X) < 2(X)]. (27)

With line-zeroes as the intersections of planes of zerogs afidg, separately, we
have a phase change ir around the lines of intersection, but for exceptional
circumstances.
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From Egs. (14)—(16) the evolution of the two-field correla{(x, 0,t) =
G« (r, t)) can be written in terms of the unitary (reduced) density maifixThus,

1
G<(r 1) = (d< (X< () = Sdan(d<a(X)p<p(O))

is well understood. The unstable long-wavelength modes grow exponentially fast.
If the power spectrum of the field fluctuations is defined by

G t) = / LTS 28)
< l k<ﬂ (277:)3 1
thenk?P(k, t) rapidly develops a “Bragg peak” &t = k3 = O(u/t).

While the Gaussian approximation (Halperin, 1981; Lui and Mazenko, 1992)
is satisfied, the line-zero ensemble densify;(t) is determined completely by
theshort-distancéoehavior ofG< (r, t) as

_ -1GZ(0,t
Nt = 00 = 57 o 0 (29)
SinceG« (r, t) has short-wavelength modes removeéd (0, t) is finite.

Further, for this period when the self-consistent approximation is valid, the

field energy(E); of the system fielg. in a box of volume) becomes

(E)t = VI(IV< Dt + (1% — (I6<120)%]
= V27 Nserdt)G< (0, 1) + A(n? — G< (0, 1))?]
= 27 L e:t)G< (0, 1) + V[ (n* — G< (0, 1))]. (30)

As before,x -field fluctuations are absorbed in the definitionudt Equation (30)
is obtained by using (29), and,er((t) = VNzerois the total length of line-zeroes,
on a scalg:™?, in the box of volumé.

We understand Eq. (30) as follows. Suppose it were valid from time),
when G. (0, 0)= O(u?), until time t = tg,. At early times most of the system
field energy (proportional t®) is in fluctuations not associated with line-zeroes,
arising from the field potential. As time passes their energy density decreases as the
system field approaches its posttransition value, becoming approximately zero. In
part, this is compensated by the term, arising from the field gradients, proportional
to the lengthL ,¢(o Of line-zeroes, whose energy per unit length increases from
O(u?) to O(n?). At time tsp, when the fluctuation energy can be ignored, we find
(Kavoussanaket al,, 2000)

(E)t ~ Lzeror, (31)

essentially the energy required to produce a vortex tangle of lelngih (up
to O(1) factors from the logarithmic tails). Although these line-zeroes have the
topological charge and energy of vortices, they are not yet full-fledged defects.
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Initially, G<(r, t) is very dependent on the value of the cutoff. As a result, line-
zeroes are extremely fractal, with a separation proportional to the scale at which
they are viewed, and are certainly not candidates for defects. Once the 'Bragg
peak’ atk = kg is firmly in the intervalk < wu, nzo(t) becomes insensitive to a
cutoff O(~1). This means that line-zeroes are straight at this scale, although they
can be approximately random walks at much larger scales. For sufficiently weak
couplings of their density this has happened by tigad he final coupling of radial

to angular modes that turns these proto-vortices into vortices incurs no significant
energy change, antle, 0f (29) is a reliable guide for the initial vortex density.

6. FINAL COMMENTS

The mechanism for vortex production that we have proposed here has two
parts. First, the environment renders the order parameter field classical at early
timestp<tsp, by or before the transition is complete. Second, classical defects
evolve from line-zeroes whose resultant density can already be inferred in the
linear regime, but whose specific attributes are a consequence of the nonlinear
Langevin equations at the spinodal titge

This is very different from traditional explanations, and we conclude with a
brief summary of them.

An early explanation, originally due to Kibble (1976), and still of common
currency, is that thermal fluctuations in the Ginzburg regime might lead to the
production of vortices, again at early times. The reason is the following: once we are
belowT,, the Ginzburg temperatuiie; < T, signals the temperature above which
there is a significant probability for thermal fluctuations between one degenerate
ground state and another on the scale of the correlation length at that temperature.
That is, the thermal energy in such a fluctuation matches the energy required to
pass over the hump of the unstable minimum. This picture presupposes a slow
guench, and cannot be accommodated in the instantaneous quench approximation
that we have used here. However, our suggestion that defects only appear at, or
about, the spinodal timg, at a density given by the density of line-zeroes is totally
at variance with this picture, and thermal activation is not the relevant mechanism.

In fact, this was recognized early by Kibble himself (Kibble, 1980), with his
later emphasis on strong causal bounds. It had been noted earlier (Kibble, 1976)
that the field must behave independently in initially space-like separated regions.
When these domains with different vacua become causally connected we expect
defects to link them. This gives late-time predictions that we cannot address with
our early-time analysis. A more powerful variant on this theme identifies the time
at which defects first appear as the time the adiabatic (long-distance) correlation
decreases at the speed of light. This time, and the resultant density, depends on
the quench timerg. There are also difficulties with this in that we have seen
that the separation of line-zeroes are obtained from the short-distance behavior
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of G<(r, t). The argument was not posed for instantaneous quenches of the type
discussed above, which correspondgo= O( 1) for which, if taken literally,

it would give defect formation from tim@©(x 1), again incorrect. We are in the
process of extending the analysis above to slower quenches to make the comparison
with the predictions of Kibble (1980) more useful.

Subsequently, two approaches have been adopted. In the first, motivated by
condensed matter physics, for which similar causal arguments apply (Zurek, 1996),
phenomenological classical stochastic Langevin equations have been proposed
(e.g. see Antunest al, 1999) for the evolution of the fields from early times.
These are the counterpart of the phenomenological time-dependent Ginzburg—
Landau equations of condensed matter and assume classical probabilities from
the beginning. However, unlike the intermediate-time Langevin equations derived
previously, these equations do not have multiplicative dissipation and multiplica-
tive noise (Gleiser and Ramos, 1944; Greiner and Muller, 1997; Lombardo and
Mazzitelli, 1996). The second approach is intrinsically quantum mechanical, treat-
ing the quantum field as a closed system. Although classical correlations are present
in the localization of the Wigner function (Guth and Pi, 1991), even for such closed
systems, it is difficult to identify defects easily, given that there are no classical
probabilities at early times. At best, there is late-time dephasing (Hetbéb,

1996). The mechanism proposed in this paper is totally different.
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